
Bypassing the Integrity Checking of Rights Objects in
OMA DRM: a Case Study with the MelOn Music Service

Jusop Choi1, William Aiken2, Jungwoo Ryoo2, Hyoungshick Kim1

1Computer Science and Engineering, Sungkyunkwan University, Republic of Korea
2Information Science and Technology, Pennsylvania State University, USA

1{cjs1992, hyoung}@skku.edu
2{wva5029, jryoo}@psu.edu

ABSTRACT
Commercial digital music is typically distributed in the music source
market via Digital Rights Management systems (DRM). DRM sys-
tems help remotely control the music contents. The Open Mobile
Alliance (OMA) DRM became the de facto standard after major
market adoption because of its support for a wide variety of differ-
ent business and usage models. In OMA DRM, a popular business
model is a (monthly) subscription enforced by controlling the pe-
riod of playback time; once the given period of time expires, the
music cannot be played. In this paper, we demonstrate how to by-
pass the integrity checking of the rights object in the OMA DRM
system through a case study of MelOn (a well-known music dis-
tribution service in South Korea) by reverse engineering its media
player equipped with a DRM agent.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information]: Security
and Protection—Digital Rights Management; D.2.7 [Software En-
gineering]: Distribution and debugging—Restructuring, reverse
engineering, and reengineering

Keywords
OMA DRM, MelOn, bypassing, reverse-engineering

1. INTRODUCTION
Digital Rights Management (DRM) is a fundamental technol-

ogy that makes today’s music distribution market possible [14].
DRM technologies allow content providers and publishers to con-
trol the whole distribution chain and apply flexible usage rules [8].
Content providers distribute their digital contents online, but after
its distribution they can still exercise control of those contents via
DRM [13]. DRM systems have been designed to prevent unautho-
rized access to and use of protected digital content.

For example, DRM systems permit users to play digital music
within a predetermined time interval and/or for a predetermined
number of times. Such permission/constraint parameters are typ-
ically included in a DRM-protected file and governed by a DRM

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

IMCOM ’16, January 04-06, 2016, Danang, Viet Nam
c© 2016 ACM. ISBN 978-1-4503-4142-4/16/01. . . $15.00

DOI: http://dx.doi.org/10.1145/2857546.2857609

agent that is strongly coupled with a music player to access the
protected file [9]. To achieve this, DRM-protected files are securely
encrypted with a cryptographic key, which can only be decrypted
by authorized DRM agents under specific usage rules and condi-
tions.

However, the effectiveness of these DRM technologies in prac-
tice is still controversial. Many security experts agree that secure
implementation of DRM technology is very tricky, and many com-
mercial DRM systems have proven insecure (e.g., against memory
analysis [16]). To make matters worse, even with a secure DRM
implementation, there exists an inevitable problem called the ana-
log hole [13] which is the duplication of DRM-protected contents
by analog means (e.g., recording the analog sound which is pro-
duced by a music player).

OMA (Open Mobile Alliance1) DRM is an open-standards based
framework for DRM technologies that supports a wide variety of
different usage models, and it has now been widely adopted as the
de facto standard for many business applications in the mobile in-
dustry [8]. In OMA DRM, one of the most popular business models
is a (monthly) subscription by controlling the period of playback
time; once the given period of time expires, the music cannot be
played. In this paper, we analyze the security of this usage model
through a case study of MelOn (a well-known music distribution
service similar to iTunes), which has controlled about 39.1% of the
online music Korean market share since 2009. According to a 2006
survey [11], the Korean digital music market was worth 191 million
USD at that time [11], and it has continuously grown since then. In
MelOn, digital music content is securely distributed in the encoded
DRM Content Format (DCF), a file format defined by OMA DRM.

This paper examines how to forcibly modify the permissions and
constraints (e.g., the time interval constraint) in an OMA DCF file
by disabling the integrity checking of the MelOn media player. The
integrity check can be bypassed by removing a conditional jump
instruction at runtime. By doing this, DRM-protected contents can
be used without any usage constraint (e.g., the time interval con-
straint can be set to any value). Our implementation illustrates how
difficult it is to securely implement a DRM agent in the real-world.

This paper is structured as follows. In Section 2, we provide ad-
ditional information about DRM and OMA DRM used by MelOn.
In Section 3, we show how to bypass the OMA DRM protection
with a modified DCF file. We present a discussion on countermea-
sures to mitigate such attacks in Section 4. In Section 5, we discuss
the ethical and legal implications of this work. And lastly, in Sec-
tion 6, we provide our overall conclusion.

1http://www.openmobilealliance.org

2. BACKGROUND
DRM technology aims to achieve the reliable and efficient distri-

bution of digital content over the Internet by providing a trustwor-
thy system to securely enforce the rights of the copyright holders,
distribution dealers, and content creators [16].

In terms of DRM, content is defined as valuable intellectual prop-
erty that should be protected from access by unauthorized users.
A user is a subject who can access DRM contents under granted
“rights” and “conditions”. The “rights” are the permissions granted
for DRM content, and the “conditions” include requirements for
(and limitations of) how the permissions can actually be executed.
By granting specific rights and conditions, content providers can
control distributed digital contents as they want. Surely, these spec-
ified rights and conditions should not be able to be directly modi-
fied by unauthorized entities (e.g., the users). In general, protection
from such modifications can be achieved with the implementation
of cryptographic algorithms. The use of DRM contents can also be
traced and monitored [14].

The main components of DRM typically include the following:
the DRM agent, the Content Issuer (CI), the Rights Issuer (RI),
and the user [3]. In particular, the roles of these components are
very important since the overall security of a DRM system depends
on the secure implementation of a DRM agent and its relationship
to the other components. The DRM agent is responsible for en-
forcing permissions and constraints associated with DRM content
as well as controlling access to that content; the CI manages the
secure delivery of DRM content; the RI defines permissions and
constraints associated with DRM contents and creates a rights ob-
ject for expressing them; and the user is the consumer of the DRM
content [3].

DRM solutions are generally classified into non-cryptographic
and cryptographic techniques. Non-cryptographic DRM techniques
usually operate based on identifying the user by physical aspects,
usually relying on manuals, disks, or other hardware for authenti-
cation. On the other hand, cryptographic DRM techniques operate
based on confirming that the user has certain access rights, using a
cipher when a user tries to access any DRM content. This approach
is especially useful when content distribution is done digitally, and
as a result, most recent DRM services have been launched based on
cryptographic techniques [16].

The digital music market has been one of the biggest adopters of
cryptographic DRM techniques. Since digital files can be easily re-
distributed (e.g., through peer-to-peer services), many music mar-
ketplaces have no choice but to use DRM systems to enforce their
end-user license agreements. However, even with DRM, some pos-
sibilities of unauthorized distribution still exist [13, 16]. Moreover,
DRM is unpopular with end-users because DRM makes digital con-
tents very uncomfortable to use and causes compatibility issues
with various devices, media players, and media file formats [6,10].
Nonetheless, music source companies still want to maintain their
DRM systems because the use of DRM systems are currently re-
garded as the best efforts to limit unauthorized use of their digital
content (e.g., unauthorized distribution to others).

2.1 OMA DRM
OMA DRM was invented by the Open Mobile Alliance with sev-

eral stakeholders, such as content providers, licence providers, and
device manufacturers to support a wide variety of different usage
models.

The OMA DRM 1.0 specification was first released in 2002 as
the world’s first open DRM standard for mobile devices [2]. As a
follow-up, OMA DRM 2.0 was developed in 2006, with a focus
on a wide variety of different distribution mechanisms to enhance

end-user experiences. The DRM architecture document particu-
larly specified a file format named the DRM Content Format (DCF)
to represent a file format for securely downloading and controlling
DRM contents, which are based on the ISO base media file format
(ISO14496-12) [2].

Figure 1: The OMA DRM 2.0 functional architecture (adapted
from [2]).

The functional architecture of OMA DRM 2.0 is illustrated in
Fig. 1. As shown in this figure, when a user downloads DRM-
controlled content from the CI, the associated rights object, which
includes a cryptographic key for accessing the DRM content, can
be delivered from the RI in a separate manner. Also, the DRM con-
tent can be re-distributed in a local network through a distribution
mechanism called super-distribution. Those delivery mechanisms
were designed to enhance flexibility and convenience for sharing
DRM-protected contents through peer-to-peer networks [2].

Figure 2: Structure of DCF (adapted from [1]).

Fig. 2 shows the structure of a DCF file. As shown in this fig-
ure, the DCF file contains one or more containers that comprise the
encrypted digital content (i.e., the content object) with meta-data
that represent information such as author, title, media type and the
URL to obtain the associated rights object to unlock the content.
The rights object is typically implemented as an XML file that de-
scribes the permissions and constraints granted to a DRM agent
when accessing a specific DCF file. Various permissions and con-
straints can be defined by Rights Expression Language (REL) [12].
The permission information specifies how a digital content can be
accessed such as play, display, execute, print, and export; the con-
straint information specifies the number of times the content can be
accessed and/or the expiration time of the content. The rights ob-
ject also contains the content encryption key needed to decrypt the
encrypted digital content. The rights object is integrity-protected
by a Message Authentication Code (MAC) such as HMAC-SHA1
and contains a list of content object identifiers and their respective

usage permissions. The MAC key is securely protected using a PKI
mechanism. Only the authorized DRM agent with its own private
key can access the MAC key and the content encryption key [15].

2.2 MelOn Service
MelOn2, a popular online music store in South Korea, uses OMA

DCF files to securely distribute its music files and control them
with predefined permissions and constraints (see Section 2.1). In
this service, downloaded DCF files can only be played with a pay-
ing user’s MelOn music player (see Fig. 3) — the MelOn player,
a program which can be downloaded from the MelOn website, is
necessary to use MelOn services.

Figure 3: MelOn player interface.

MelOn launched a service called “Free-Club” to offer unlimited
downloads and unlimited music streaming on a monthly basis. If
the user’s subscription is expired and is not renewed, then the user’s
MelOn music player will no longer play the downloaded DCF files
when the expiration date of the user’s subscription, explicitly given
in those files, has passed.

3. BREAKING THE DRM PROTECTION IN
MELON

Before playing a DCF file, the DRM agent, embedded in the
MelOn media player, checks whether the DCF file should be played
with its current permissions and constraints. For example, once the
downloaded DCF file is past its expiration date, that DCF file can-
not be played anymore. In this paper, however, we show how diffi-
cult it is to deploy an access policy-based DRM implementation in
this way by breaking the DRM protection in the MelOn player. In
our experiments, we used a PC (with running 32-bit Windows 7).

Overall, there are two ways of breaking the OMA DRM protec-
tion; we need to bypass either (1) the checks for permissions and
constraints on a DCF file or (2) the check for the integrity of the
rights object in a DCF file. In general, the check codes for (1) can
be located in several different regions (e.g., the check code for sub-
scription expiration time is different from the check code for count
limitation). Therefore, for a more generalized breaking method, we
focus on how we bypass the check code for (2).

This process can be subdivided into two phases: (A) identifying
the locations of permissions and constraints in a rights object, and
(B) disabling the integrity check in the MelOn media player ap-
plication. Each of these phases will be discussed in the following
subsections.

The first step is to identify the locations of permissions and con-
straints, including (but not limited to) the subscription expiration
2http://www.melon.com/index.htm

date, to be modified in a DCF file. To achieve this goal, we can
compare the headers of DCF files with different permissions and
constraints.

(a) Time-Not-After = 20140730 · · ·

(b) Time-Not-After = 20150430 · · ·

Figure 4: Comparison of two DCF files that can be played until
July 30, 2014 and until April 30, 2015, respectively. The red
boxes represent the differences (eValue, Time-Not-After,
and eAuthcode) between those DCF files.

Fig. 4 shows the comparison results between DCF files that can
be played until July 30, 2014 and April 30, 2015, respectively.
We attempted to identify the differences between these two DCF
files using a hex editor. The differences between the two files
are eValue, Time-Not-After, and eAuthcode (see the red
boxes in Fig. 4). With those different parts, we examined each
part one-by-one and found that Time-Not-After (see the mid-
dle box in each figure) represents the subscription expiration date
consisting of the year, month, day, hour, minute, and second. Since
the digest length for HMAC-SHA1 used in OMA DRM is 20 bytes
(see Section 2.1), we surmise that eAuthcode is the MAC value
used to ensure the integrity of the rights object in the DCF file.

When the locations of permissions and constraints are exactly
identified, it becomes easy to play such DCF files without any re-
striction (e.g., expiration time constraint) since those permissions
and constraints might be specified with any desired values. As we
already described in Section 2.1, however, the integrity of the rights
object in a DCF file is securely protected by its MAC. That is, the
DRM agent, embedded in the MelOn music player, always checks
if any of the permissions and constraints included in a DCF have
been maliciously modified before playing the DCF file. Therefore,
we need to disable the integrity check of the rights object in the
OMA DCF files if we want to use it without any usage constraint.

3.1 Identifying the Locations of Permissions
and Constraints

We performed a dynamic analysis of the MelOn media player
with two popularly used tools: (1) we used OllyDBG3 to obtain a
list of all referenced strings by our target keywords such as eValue,

3http://www.ollydbg.de/

Time-Not-After, and eAuthcode; and (2) we used IDA Pro4

to figure out the check code for the integrity of the rights object in a
DCF file and analyze its behaviors. Through this dynamic analysis,
we finally identified our target codes from the MelOn media player.

3.2 Disabling Integrity Check
For checking the integrity of a rights object in a DCF file, shown

in Fig. 5, the DRM agent obtains some header information, such as
cid type, Time-Not-After, allowable-services and
the MAC key. Next, the DRM agent calculates the MAC value
using HMAC-SHA1 with the obtained strings and values from the
DCF file. Finally, the DRM agent compares the calculated MAC
value with eAuthCode included in the DCF file. If they are iden-
tical, the rights object must not have been modified. The encrypted
content in the DCF file can then be decrypted and accessed by the
DRM agent. Otherwise, the rights object is identified as modified,
and the DRM agent handles the DCF file as a corrupted file.

Figure 5: Procedure of Integrity Checking of Rights Objects

Fig. 6(a) shows the MAC comparison procedure at the assembly
code level in the MelOn media player. We can see that the control
flow can be changed at the “conditional jump” (jnz) instruction
(see Line 1 in Fig. 6(a)): the difference between the calculated
MAC value and eAuthCode is compared with 0; if they are not
same, the control flow is changed to an error-handling routine by
the jnz, short for Jump if Not Zero, instruction (see Line 2
in Fig. 6(a)); otherwise, the program executes the following in-
structions in sequence normally.

(a) Original player (b) Cracked player

Figure 6: MAC verification procedure in the MelOn media
player is disabled by replacing the jnz instruction with nop
instructions.

Therefore, we can bypass this MAC verification procedure by re-
placing the jnz instruction with nop, short for No Operation,
instruction in a simple manner (see Fig. 6(b)).

The jnz instruction is two bytes long. That is, we should re-
place this instruction with other instructions that are also two bytes

4https://www.hex-rays.com/products/ida/support/download.shtml

long in order to keep the other instructions at the same positions
in the original code. In this paper, we use two nop instructions
(0x90) to achieve this goal without changing any semantic of the
original code5 With this technique, we cracked the MelOn media
player in order to verify the feasibility of the proposed attack and
found that the cracked MelOn media player runs normally with any
DCF file even when its rights object is modified (e.g., the value of
Time-Not-After is intentionally extended).

4. COUNTERMEASURES
By a reverse engineering analysis of the MelOn media player,

we managed to reveal the structure of its machine codes and found
a method to modify the assembly code to bypass security checks
enforced by the DRM agent. Thus, a straightforward recommenda-
tion would be to use code obfuscation [4] and/or anti-debugging [5]
techniques in order to hide critical codes and control flows. For
example, a packing algorithm called “Alternate EXE Packer”6 pro-
vides a reasonable level of protection against debugging (see Fig. 7)
— our disassembling program (i.e., IDA Pro) cannot produce de-
compiled codes with any meaningful string that provide clues to the
functionality and various system calls made by codes. This would
make the DRM agent program harder to analyze.

Figure 7: Decompiled MelOn program after packing the pro-
gram with “Alternate EXE Packer”.

However, software-based DRM solutions have inherent limita-
tions since program codes themselves can always be reviewed and
then compromised in practice, before or during runtime. Without
strong protection for DRM agents, DRM techniques only offer a
marginal security improvement. Therefore, we need to consider a
mechanism for verifying the trustworthiness of DRM agents.

In general, the basic mechanism is as follows: Before running a
media player, a service provider remotely verifies the media player
integrity and grants access to that running only when it is not com-
promised. Such an integrity checking system can be used together
with some hardware mechanism such as a Trusted Platform Mod-
ule (TPM) [7] or ARM TrustZone [17]. Those mechanisms provide
a means to reliably report the integrity of software and/or platform
configurations with protected key storage to build a strong platform
integrity verification mechanism by securely protecting the hash of
the normal program binary image through a hardware chip embed-
ded in the motherboard.

5. ETHICAL AND LEGAL ISSUES
The main motivation of our experiments is to analyze potential

risks of OMA DRM services and to suggest reasonable counter-
measures to mitigate such risks. Therefore, we evaluated whether
DRM protection can be disabled through a case study of MelOn.
The discovered vulnerability has been completely reported to Loen

5There are several different techniques to achieve the same goal.
For example, instead of using two nop instructions with 0x90 and
0x90, a sequence of “0x0F and 0x0D” or “0x50 and 0x58”
instructions can also be used.
6http://www.alternate-tools.com/pages/c_exepacker.php?lang=ENG

Entertainment Inc., the organization that operates the MelOn ser-
vice. We also reported this vulnerability to the Korea Internet and
Security Agency (KISA) running a bug bounty program for appli-
cations used in South Korea.

6. CONCLUSION
In this paper, we implemented a proof-of-concept cracking pro-

cedure to disable the protection of OMA DRM. We carefully ex-
amined DCF files with different constraints and identified their ex-
act locations. With that information, we reverse-engineered the
MelOn media player to bypass the integrity check of the rights
object in a DCF file and successfully cracked the media player.
Our study shows how difficult it is to securely protect digital items
with software-based DRM solutions alone since DRM agents them-
selves can be compromised. Therefore, it is important to deploy
appropriate defense mechanisms that would ensure the integrity of
DRM agents with roots of trust at a low level (e.g., through hard-
ware mechanisms). Although we currently limited our security
analysis to the MelOn service alone, we believe this type of at-
tack can also be applicable to other systems based on OMA DRM.
For future work, we are planning to extend our security analysis to
other DRM applications.

7. ACKNOWLEDGEMENTS
This work was supported by the NRF grant funded by the Ko-

rea government (No. 2014R1A1A1003707). This work was also
funded in part by the ICT R&D program (2014-044-072-003 , ‘De-
velopment of Cyber Quarantine System using SDN Techniques’) of
MSIP/IITP. This research was supported by the MSIP (Ministry of
Science, ICT and Future Planning), Korea, under the ITRC support
program (IITP-2015-H8501-15-1008) supervised by the IITP.

8. REFERENCES
[1] Open Mobile Alliance. Candidate version 2.0–13. 2004.
[2] Willms Buhse and Jan van der Meer. The open mobile

alliance digital rights management [standards in a nutshell].
Signal Processing Magazine, IEEE, 24(1):140–143, 2007.

[3] Feng-Cheng Chang, Chiao-Lin Wu, and Hsueh-Ming Hang.
A Switchable DRM Structure for Embedded Device. In
Proceedings of the Third International Conference on
International Information Hiding and Multimedia Signal
Processing, 2007.

[4] Christian S. Collberg and Clark Thomborson. Watermarking,
tamper-proffing, and obfuscation: Tools for software
protection. IEEE Transactions on Software Engineering,
28(8):735–746, 2002.

[5] Michael N Gagnon, Stephen Taylor, and Anup K Ghosh.
Software protection through anti-debugging. Security &
Privacy, IEEE, 5(3):82–84, 2007.

[6] David Geer. Digital rights technology sparks interoperability
concerns. Computer, 37(12):20–22, 2004.

[7] Trusted Computing Group. TPM Main Specification Version
1.2 rev. 103. http://www.trustedcomputinggroup.org/
resources/tpm_main_specification, 2007.

[8] F. Hartung and F. Ramme. Digital rights management and
watermarking of multimedia content for m-commerce
applications. Communications Magazine, IEEE,
38(11):78–84, 2000.

[9] James Irwin. Digital rights management: The open mobile
alliance DRM specifications. Information Security Technical
Report, 9(4):22–31, 2004.

[10] Ton Kalker. On Interoperability of DRM. In Proceedings of
the ACM Workshop on Digital Rights Management, 2006.

[11] Kyoung-Joo Lee. The coevolution of it innovation and
copyright institutions: The development of the mobile music
business in japan and korea. The Journal of Strategic
Information Systems, 21(3):245–255, 2012.

[12] Nicholas Paul Sheppard and Reihaneh Safavi-Naini. On the
operational semantics of rights expression languages. In
Proceedings of the Nineth ACM Workshop on Digital Rights
Management, DRM ’09, pages 17–28, New York, NY, USA,
2009. ACM.

[13] Mark Stamp. Information security: principles and practice.
John Wiley & Sons, 2011.

[14] SR Subramanya and Byung K Yi. Digital rights
management. Potentials, IEEE, 25(2):31–34, 2006.

[15] Daniel Thull and Roberto Sannino. Performance
Considerations for an Embedded Implementation of OMA
DRM 2. In Proceedings of the Conference on Design,
Automation and Test in Europe, pages 46–51, 2005.

[16] Ruoyu Wang, Yan Shoshitaishvili, Christopher Kruegel, and
Giovanni Vigna. Steal This Movie - Automatically
Bypassing DRM Protection in Streaming Media Services. In
Proceedings of the 22Nd USENIX Conference on Security,
2013.

[17] J. Winter. Experimenting with ARM TrustZone – Or: How I
Met Friendly Piece of Trusted Hardware. In Proceedings of
Conference on Trust, Security and Privacy in Computing and
Communications, pages 1161–1166, 2012.

APPENDIX
A. APPENDIX OF ABBREVIATIONS

ABBR. Description

DRM Digital Rights Management

OMA Open Mobile Alliance

CI Content Issuer

RI Rights Issuer

RO Rights Objects

REL Rights Expression Language

DCF DRM Content Format

MAC Message Authentication Code

TPM Trusted Platform Module

KISA Korea Internet and Security Agency

