
Keyboard or Keylogger?: a security analysis of
third-party keyboards on Android

Junsung Cho, Geumhwan Cho and Hyoungshick Kim
Department of Computer Science and Engineering

Sungkyunkwan University, Republic of Korea
{js.cho, geumhwan, hyoung}@skku.edu

Abstract—Use of third-party keyboards makes Android more
flexible and customizable. However, we demonstrate their poten-
tial security risks by implementing a proof-of-concept keylogger
that can effectively steal users’ sensitive keystrokes with 81
popular websites (out of 100 tested websites). We also empirically
analyzed the security behaviors of 139 keyboard applications that
were available on Google Play. Our study results show that the
majority of existing keyboard applications (84 out of 139) could
be potentially misused as malicious keyloggers. To avoid such
keylogging attacks, we discuss possible defense mechanisms.

I. INTRODUCTION

Google allows third-party custom keyboard applications
on Android. Therefore, users can freely change the default
keyboard with third-party ones. However, installing third-party
keyboard applications might yield a serious security problem.
Recently, an Android developer showed a possible threat in
using third-party keyboard applications; a legitimate third-
party keyboard called “SwiftKey” can turn into a malicious
keylogger by injecting code snippets.1

In this paper, we extend his work into a more controlled
setting to explore in depth secure concerns raised by third-party
keyboard applications. We implemented a proof-of-concept
keylogger application to show the potential risk of third-party
keyboard applications. Unfortunately, Google’s existing appli-
cation review process does not work effectively in reducing
the risk of such keylogger applications. The key contributions
of the paper can be summarized as follows:

• We implemented a proof-of-concept keylogger appli-
cation that requires the INTERNET permission alone
and tested its feasibility with 100 popular websites.
Our experimental results show that user login data
from 81 websites can be effectively captured by our
keylogger application. Our keylogger application suc-
cessfully passed Google’s application review process
within a few hours despite its dangerous functions for
stealing users’ keystrokes (see Section III).

• We investigated the security behaviors of the 139
third-party keyboard applications that were freely
available on the Google Play store to analyze their po-
tential risks. Fortunately, the existing applications now
seem innocent but the majority of those applications
with the INTERNET permission could be potentially
misused as keyloggers (see Section IV).

1http://thehackernews.com/2013/03/android-swiftkey-keyboard-turned-
into.html

• We suggest several practical recommendations to fix
the security problem associated with third-party key-
board applications (see Section V).

II. RELATED WORK

The user is the ultimate “client” of the system. Therefore,
the user’s input channel is frequently attacked by malware that
tries to steal sensitive information such as user password. This
type of malware is typically called keylogger.

Recently, keylogging issues on mobile devices have been
studied [1]. Cai et al. [2] particularly introduced a new side
channel attack which focuses on guessing a user’s touched
positions for typing a screen keyboard on the touch screen.

As for keylogging attacks using third-party keyboards,
Mohsen et al. [3] introduced several possible attack scenarios.
Their study results, however, may not be sufficient to show the
real impacts of such attacks because their study mainly focused
on analyzing existing keyboard applications’ permissions in-
formation that could be misused for keylogging operations. In
contrast, we demonstrated how such a keylogger application
can be implemented through intensive tests with real websites.

III. HOW TO IMPLEMENT A KEYLOGGER FOR ANDROID

We demonstrate how to implement a proof-of-concept key-
logger disguising itself as a legitimate keyboard application.
Suppose that a user has installed our keylogger application
on her Android device to use that application as a third-party
custom keyboard. Figure 1 shows the overview of our system.

User User’s Android device
with our keylogger

PHP

1. Type keystrokes
2. S

electiv
ely send

keystr
okes 3. Store

keystrokes

Database
connection file

Keylogger’s server

Database

Fig. 1: Overview of our proof-of-concept keylogging system



2

TABLE I: Input types for text fields used in Android

No. Input Type No. Input Type
1 TYPE_DATETIME_VARIATION_DATE 11 TYPE_TEXT_VARIATION_PASSWORD
2 TYPE_DATETIME_VARIATION_NORMAL 12 TYPE_TEXT_VARIATION_PERSON_NAME
3 TYPE_DATETIME_VARIATION_TIME 13 TYPE_TEXT_VARIATION_PHONETIC
4 TYPE_NUMBER_VARIATION_NORMAL 14 TYPE_TEXT_VARIATION_POSTAL_ADDRESS
5 TYPE_NUMBER_VARIATION_PASSWORD 15 TYPE_TEXT_VARIATION_SHORT_MESSAGE
6 TYPE_TEXT_VARIATION_EMAIL_ADDRESS 16 TYPE_TEXT_VARIATION_URI
7 TYPE_TEXT_VARIATION_EMAIL_SUBJECT 17 TYPE_TEXT_VARIATION_VISIBLE_PASSWORD
8 TYPE_TEXT_VARIATION_FILTER 18 TYPE_TEXT_VARIATION_WEB_EDIT_TEXT
9 TYPE_TEXT_VARIATION_LONG_MESSAGE 19 TYPE_TEXT_VARIATION_WEB_EMAIL_ADDRESS
10 TYPE_TEXT_VARIATION_NORMAL 20 TYPE_TEXT_VARIATION_WEB_PASSWORD

In the Android platform, the keylogging process can be
particularly efficiently implemented; our keylogger application
can selectively collect users’ sensitive input keystrokes alone
with the default feature provided by Android. When a user
types a keystroke, our keylogger application can obtain the
information about the input type for each text field in an
application or a web page. That is, that application can
check whether the typed keystrokes are likely to be valuable
(or sensitive) with the text field information. For example,
if a keylogger developer is only interested in harvesting
passwords, the developer can collect the typed keystrokes
in the only text fields associated with the password (e.g.,
TYPE_TEXT_VARIATION_PASSWORD). The full list of in-
put types used in Android is shown in Table I.

After capturing keystrokes, our keylogger application sends
them to a (keylogger’s) remote server using a PHP script to
connect the keylogger application with a MySQL database
in that server; INTERNET is the only permission needed to
complete this process. Since a background thread can be run
stealthily to perform the network delivery process, the victim
user may not be aware of that activity. Figure 2 shows an
example of keystroke values stored in our database. For sim-
plification, our keylogger application delivers each character
as typed. We tested this overall procedure with Google Nexus
5 which is running Android 5.0 and confirmed that our proof-
of-concept keylogger application works well.

Fig. 2: Keystroke values stored in our database

We performed additional experiments to see how our
keylogger application can also work well in real environments.
We used the top 100 websites selected from the Alexa Top-
500 Global Sites2. To test whether keylogging attacks can be
successfully achieved, we used the Chrome web browser. For
each website, we tested whether user typed keystrokes for
login can be successfully stored in our database. From our
test results, user login data can be successfully captured in
81 out of the tested websites; eight websites did not have a
web page with login form; four websites were not connected;

2http://www.alexa.com/topsites

(a) App information (b) Installation warning

Fig. 3: Ineffective warning messages on the Google Play store

two websites only supported the single-sign-on authentication
such as OAuth [4]. Interestingly, even for financial institutions
including Bank of America and Chase Bank which
might be high-risk targets, user login data can be successfully
captured in the same manner.

When we submitted our proof-of-concept keylogger appli-
cation to the Google Play store, that application successfully
passed Google’s application review process within several
hours despite the functions that can steal sensitive inputs from
users. Figure 3(a) shows that our proof-of-concept application
was successfully registered in the Google Play store. To make
matters worse, when a user tries to install that application,
the Google Play store’s warning messages about permissions
requested by that application do not seem to be effective at
all. Google has recently made changes to how permissions are
displayed3; no warning messages were displayed about the
INTERNET permission during the installation process when
Android applications require that permission (see Figure 3(b)).
If a user wants to check whether the INTERNET permission
is requested by an application, the user must manually scroll
down on the Google Play store application. Therefore, casual
users may fail to recognize the potential risk of such applica-
tions and just continue the installation process.

Finally, we analyzed the effectiveness of antivirus scanners

3https://support.google.com/googleplay/answer/6014972



3

Fig. 4: Frequency of permissions from each thrid-party key-
board application

in detecting such keylogger applications. We used AndroTo-
tal [5] which is a service to scan suspicious Android applica-
tions with multiple Android antivirus scanners. Unfortunately,
all the eight scanners used in AndroTotal were not effective
to detect our keylogger application; five scanners reported
“no threat”; three scanners took “time out” in analyzing our
application (see the test results in http://andrototal.org/scan/
result/UNXhD78MSdiD6HG7K-txIg).

IV. ANALYSIS OF THIRD-PARTY KEYBOARDS FROM THE
GOOGLE PLAY STORE

We explore potential risks associated with third-party
keyboards in the Google Play store. We empirically ana-
lyzed whether those existing keyboard applications behave
suspiciously or not by observing their characteristics. We
downloaded all 139 third-party keyboard applications that
were freely available on the Google Play store4 and analyzed
them individually. Our analysis particularly focused on two
points: (1) numbers and types of requested permissions and
(2) purposes of the INTERNET permission.

A. Numbers and Types of permissions

We used a tool named “aapt” (Android Asset Packaging
Tool5) that is popularly used for extracting the Android mani-
fest file from an application package (i.e., APK file) where the
permissions required by the application are specified. Figure 4
shows the distribution of the number of permissions for the
downloaded keyboard applications. From the histogram in Fig-
ure 4, we can see that those third-party keyboard applications
require many more permissions than they might need.

To analyze the characteristics of those permissions, we
also looked at the most commonly requested permissions.
Figure 5 shows the list of the top 20 most commonly
requested permissions and their distribution. We can see that
some potentially dangerous permissions (INTERNET,
READ_CONTACTS, WRITE_EXTERNAL_STORAGE,
RECORD_AUDIO and READ_PHONE_STATE)6 were
popularly requested although they do not seem to be
necessary to function properly.

4There were 250 third-party keyboard applications in total and 111 of them
were paid applications.

5http://www.kandroid.org/guide/developing/tools/aapt.html
6Those permissions are also popularly requested by Android malware [6]

Fig. 5: Top 20 most used permissions in the 139 third-party
keyboard applications downloaded from the Google Play store

B. Purposes of the INTERNET permission

As discussed in Section III, the INTERNET permission –
requested by 61.8% (86 of 139) of keyboard applications –
might particularly be dangerous since that permission can be
misused for keylogging. We use Wireshark as a network sniff-
ing tool to analyze network traffic for keyboard applications.
We tested 84 applications in total since two applications were
not working.

For each keyboard application, we recorded the network
traffic generated by that application while trying to sign in
at Gmail (http://www.gmail.com). Fortunately, in our experi-
ments, all the tested applications seem innocent; only 7.9%
(11 out of 139) of those applications generated network traffic
but did not deliver user login data to a suspicious host. We
think that the INTERNET permission is generally used to
check the application version. However, some applications
could be a time or logic bomb [7] that we did not detect and in
theory, those 84 applications (out of 139) with the INTERNET
permission can always be transformed to keyloggers.

V. COUNTERMEASURES

We discuss several mechanisms possible to mitigate key-
loggers as described in Section III.

A. Preventing data leakage via information flow tracking

To prevent third-party keyboard applications’ keylogging
behaviors, we can use fine-grained information flow tracking
by monitoring how the typed information from a keyboard
application propagates within a system. That is, an information
flow tracking system can warn the user when a keyboard
application delivers sensitive information (e.g., user password)
to unknown external servers. Previous studies [8], [9] proposed
a possible solution based on dynamic analysis for realtime
privacy monitoring on smartphones. Such a technique could
be easily applied to mitigate the keyloggers presented in Sec-
tion III. However, this approach typically imposes a significant
runtime overhead because all information flow operations are
monitored. In order to avoid the runtime overhead, static
analysis tools (e.g., [10]) were recently introduced.



4

(a) Nonghyup Bank (b) KBstar Bank (c) Shinhan Bank

Fig. 6: Trustworthy keyboards in bank websites

B. Use of trustworthy keyboards

For critical applications or situations (e.g., user login),
the use of a trustworthy keyboard can only be enforced to
reduce the risk of using a suspicious keyboard application. For
example, when a user types her password to login to a bank
website, a predefined trustworthy keyboard could be provided
by the website instead of the installed third-party keyboard ap-
plication. Figure 6 shows such examples of keyboards provided
by websites7. When a user tries to login to their websites, a
trustworthy keyboard interface is automatically popped up.

Since the current Android platform can be used without
any change to support this approach, this technique seems to
be highly recommendable.

C. Redesigning permission warning messages

As mentioned in Section III, INTERNET is the only
permission needed to complete keylogging process. However,
the Google Play store does not inform the INTERNET per-
mission to users (see Figure 3(b)). According to the Google’s
explanation8, this is because most applications typically require
the INTERNET permission.

We surmise that the current warning system is designed
for average applications and thus might underestimate risks
for dangerous applications. We suggest that permission warn-
ing messages for third-party keyboard applications should be
reconsidered particularly due to their potential risks.

D. Improvement of the application review process

Even though Google runs an application review process
before publishing an application, the successful registration of
our proof-of-concept keylogger application in the store shows
the limitations of this process. Thus, Google should improve
its automatic application review process to avoid potentially
harmful applications being added to the store.

VI. ETHICAL CONSIDERATIONS

We just wanted to show that such a malicious keylogger
can successfully pass the Google’s application review process.
It is not our intention to distribute a potentially dangerous

7They are popular bank websites in South Korea
8https://support.google.com/googleplay/answer/6014972

keylogger application to users. Therefore, we added warning
messages into the application description to prevent actual
users from installing this keylogger application, and no one
has downloaded our application during the study. After the
study has been completed, we removed the application from
the Google Play store.

VII. CONCLUSION

In this paper, we discussed a potential security issue about
third-party custom keyboards by implementing a proof-of-
concept keylogger and successfully registering that application
in the Google Play store. Interestingly, the INTERNET permis-
sion alone is enough to deploy a malicious keylogger that can
be used to steal a user’s sensitive input keystrokes.

We also examined the security behaviors of 139 keyboard
applications that were freely available on the Google Play
store. Even though we failed to discover real keyloggers that
are actively running on Android devices, we note that keyboard
applications with the INTERNET permission can be easily
transformed to malicious keyloggers anytime. Therefore, it will
be important to develop defense mechanisms so as to make
such keyloggers ineffective.

ACKNOWLEDGMENT

This work was supported by the National Research Foundation of Korea (NRF) grant

(No. 2014R1A1A1003707), the ITRC (Information Technology Research Center) support

program (IITP-2015-H8501-15-1008), and the ICT R&D program (2014-044-072-003,

‘Development of Cyber Quarantine System using SDN Techniques’) of MSIP/IITP.

REFERENCES

[1] D. Damopoulos, G. Kambourakis, and S. Gritzalis, “From keyloggers to
touchloggers: Take the rough with the smooth,” Computers & Security,
vol. 32, pp. 102–114, 2013.

[2] L. Cai and H. Chen, “Touchlogger: Inferring keystrokes on touch screen
from smartphone motion.” in Proceeding of the 6th USENIX Workshop
on Hot Topics in Security, 2011.

[3] F. Mohsen and M. Shehab, “Android keylogging threat,” in Proceeding
of the 9th IEEE Conference on Collaborative Computing: Networking,
Applications and Worksharing, 2013, pp. 545–552.

[4] B. Leiba, “Oauth web authorization protocol,” IEEE Internet Comput-
ing, vol. 16, no. 1, pp. 74–77, 2012.

[5] F. Maggi, A. Valdi, and S. Zanero, “Andrototal: A flexible, scalable tool-
box and service for testing mobile malware detectors,” in Proceedings
of the Third ACM workshop on Security and privacy in smartphones &
mobile devices, 2013, pp. 49–54.

[6] AV-Comparatives, “Mobile security review,” Tech. Rep., 2012.
[7] C. E. Landwehr, A. R. Bull, J. P. McDermott, and W. S. Choi,

“A taxonomy of computer program security flaws,” ACM Computing
Surveys, vol. 26, no. 3, pp. 211–254, 1994.

[8] L.-K. Yan and H. Yin, “Droidscope: Seamlessly reconstructing the os
and dalvik semantic views for dynamic android malware analysis.” in
USENIX Security Symposium, 2012, pp. 569–584.

[9] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: An information-
flow tracking system for realtime privacy monitoring on smartphones,”
ACM Transactions on Computer Systems, vol. 32, no. 2, p. 5, 2014.

[10] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” in Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation. ACM, 2014,
p. 29.


